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ABSTRACT 
It is commonly observed that resolution plays a role in coherent change detection.  
Although this is the case, the relationship of the resolution in coherent change detection is 
not yet defined.  In this document, we present an analytical method of evaluating this 
relationship using detection theory.  Specifically we examine the effect of resolution on 
receiver operating characteristic curves for coherent change detection.   
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1. Executive Summary 
This report gives a general model for radar designers to analyze coherent change 
detection performance with radar resolution.  The analysis of the performance is based on 
receiver operating characteristic curves from detection theory.  The model is developed 
for three different statistical cases of the size of the change region relative to the 
resolution.  The first is when the change region is at least as large as the area covered by 
multilook estimation window used in coherence estimation.  The second is where the 
change region is smaller than the multilook estimation window size, but larger than the 
synthetic aperture radar resolution size.  The third is where the change region is smaller 
than the synthetic aperture radar resolution. 
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2. Introduction 
As with all radar imaging techniques, resolution is a critical quantity in coherent change 
detection (CCD).  The problem is that in CCD we deal with complex scene content that is 
best described probabilistically.  The result is that the simplicity of the Rayleigh 
resolution does not adequately describe the complexity of the effect of resolution in CCD.  
At its core, the CCD problem is a detection problem.  In this document we discuss this 
problem from a probabilistic viewpoint where the Rayleigh radar resolution is an 
important input parameter.  We will examine detection of changes as a function of the 
size of the change versus Rayleigh resolution by developing an analytical model to 
represent the process.  We also point out that in CCD there are two different resolutions.  
The first is the familiar synthetic aperture radar (SAR) imaging Rayleigh resolution.  The 
second is a “spoiling” of the resolution by the multilook operation used for coherence 
estimation in CCD.  Both quantities play a role in model developed for detection. 

In this document we present a mathematical framework for comparing different 
resolutions in terms of CCD performance.  In general, this is a difficult subject.  Although 
the math in this document is complicated, the model itself has been simplified.  The result 
is a basic framework to discuss resolution in CCD within the limitations of the model.  It 
is postulated that this model represents a baseline analysis 

The unique contribution of this document is to extend the current analysis of CCD 
detection to smaller regions of change than considered in [PREI06] and [BICK15].  Both 
of these hint at the issues addressed in this document.  In general, this extension is 
mathematically difficult.  In this document we take advantage of a known (but not 
generally well-known) statistical approximation to extend the analysis to incorporate a 
more general case.  As in [PREI06] and [BICK15], we base this analysis on considering 
this a detection problem.  

It is important to indicate that we are considering the effects of resolution in CCD aside 
from any other issues.  In other words, we assume consistency in processing, registration, 
etc.  In addition, even though resolution can affect the signal-to-noise ratio (SNR), we 
will do not directly address this issue in this document; rather, we provide the reader to 
tools to perform this trade-off1.  

In section 3, we discuss resolution as pertains to CCD and introduce a model of 
resolution where we partition the analysis into three separate cases.  In section 4 we apply 
this model to the CCD detection problem.  In section 5 we briefly present a possible 
slight adjustment to the analytical model.  In section 6 we examine the implications from 
the model and the limitations of the model.  In section 7 we discuss other considerations 
for resolution and CCD that are outside the scope of the model presented in this 
document.  In the final section, we give concluding remarks. 

                                                 
1 More accurately, we assume that the SNR is incorporated in whatever background coherence we 
assume, and the background coherence will be a parameter in this report.  This report provides the tools 
for a more in depth consideration. 
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In this document, it will be assumed that the reader is intimately familiar with coherent 
change detection in the context of synthetic aperture radar. 
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3. Resolution and CCD 
Key concepts in this section:  The size of the change regions relative to the resolution is an important 
parameter.  There are two resolutions of interest for CCD which are the radar (Rayleigh) resolution, and the 
size (“resolution”) of the multilook coherence estimation window.  Therefore, the development is considered 
as three distinct cases of the size of the change region relative to these resolutions.  They are: 1) the size of 
the region with change is larger than or equal to the size of the region used for multilook estimation of the 
coherence; 2) the size of the change region is less than the multilook resolution but at least the size of the 
radar resolution; or 3) the size of the change region is less than a radar resolution. 

It is well-known that resolution is a key parameter in CCD.  In spite of this fact, and the 
obvious qualitative improvement, there is currently no clear method of evaluating the 
effectiveness of improving the resolution on CCD performance. 

In CCD we are attempting to identify a region of change by a examining a given region 
for a deviation in coherence relative to the coherence in the surrounding areas.  As the 
“D” in CCD suggests, this is a detection problem.  In general, due to the probabilistic 
nature of detection problems we want to have as much information as possible to make a 
confident decision.  Finer radar resolution allows us to have more pixels on the change 
and no-change regions leading to a benefit in the decision process2.  Intuitively, if 
possible, we would not want to mix the two regions in the detection decision.  In other 
words ideally we would not want to mix change pixels with no-change pixels during 
coherence estimation3.  Again, finer resolution permits us more fidelity in this separation.   

In CCD, there are two resolutions of interest4.  The first resolution is the one we typically 
think of, namely the standard SAR Rayleigh resolution.  We will designate this resolution 
by the variable, Rρ . The second is the resolution caused by the “multilook” operation in 
the coherence estimation process (see [BICK14] and references therein).  This multilook 
process acts as a low-pass filter which can be thought of as a loss of resolution on the 
coherence product.  We will refer to this by the variable, mlρ .  In order to perform 
reasonable coherence estimation, we require ml Rρ ρ> .  In fact in this document we will 
assume in this document that ml RLρ ρ= , where L is an integer equal to the number of 
independent looks used in the coherence estimation.  Figure 1 is repeated from 
Appendix A for convenience and illustrates the two resolutions.   

      

                                                 
2 Provided all other considerations remain the same. 
3 In a philosophical sense, this is like Wiener filtering. 
4 Note that in our discussion of CCD, the resolution is really an area, i.e., a 2D resolution cell size. 
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Rayleigh 
resolution 

Multilook 
resolution

 

Figure 1:  Illustration of two resolutions in CCD in terms of image pixels (in the 
illustration 12ml Rρ ρ= ) 

 
Based upon this preceding discussion we will define our model in this document in terms 
of three separate cases.  We define the “size” of the change region as cΓ

5.  The first 
region is for c mlρΓ ≥ .  The next region is for ml c Rρ ρ> Γ ≥ subject to 

positive integerc Rk krΓ = ∈ 6.  The final region we will consider is c RρΓ < .  The 
three cases are illustrated in Figure 2 below. In this figure, the black grid cells represent 
the SAR Rayleigh resolution cells.  The light blue cells indicate the size of the multilook 
coherence estimation box size.  The gray colored areas are the areas of change.  The 
filled-in white areas are the no-change, or quiescent regions. 

More discussion on the model is in Appendix A.  The reason for the partitioning into 
these regions will be discussed in the following sections. 

                                                 
5 In follow on discussion, we will note that we are interested in the change region normalized by the 
Rayleigh resolution, c RρΓ = Γ . 
6 This integer assumption allows us to present the required analysis without adding complexity that 
creates unnecessary confusion.   We note that the analysis presented in this document can be extended 
to the more general case, but becomes quite complicated. 
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Figure 2:  Three different change region cases (a) change covers an entire multilook 

resolution cell; (b) change covers a partial multilook resolution cell (c) change covers 
partial Rayeigh resolution cell 
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4. Analytical model for resolution and CCD 
Key concepts in this section:  Coherent Change Detection (CCD) is about detection of change via 
unexpected change in the coherence between two images.  The effect of resolution is analyzed from a 
detection theory viewpoint.  This section shows that the three cases of change size from the previous section 
must be considered separately because the statistical behavior for each case is different.  The mathematical 
model for each case is presented.  We suggest that there is a benefit from normalizing all different 
resolutions and change regions relative to the size of the raw SAR resolution. 

We now present an analytical model to describe the effect of resolution on CCD.  In this 
section we discuss the proposed model and how it relates resolution to the CCD receiver 
operating characteristic (ROC) curve performance.  The relevant math and detection 
theory for this analysis is developed in Appendix A, B and C.  We will repeat some of the 
pertinent information from the appendices in the follow sections.   

4.1 Overview 

To briefly recap, it is our goal in this document to develop an analytical method to 
evaluate the effect that resolution has on the detection of change in CCD.  In this 
document we derive an analytic model for the ROC curves to describe CCD detection as 
a function of the quiescent coherence and resolution.  The ROC curves require the 
cumulative probability density functions that correspond to the hypotheses of interest.  
Effectively, the ROC curves describe the separation of the probabilities of the hypotheses 
of interest as a function of parameters.  In our case, the hypotheses will be 1H  when a 
change has occurred, or 0H  when no-change has occurred within a specific region of 
attention. The main parameter that we wish to investigate is the radar resolution, although 
other parameters, such as quiescent coherence, and number of independent looks will 
play a significant role.  Intuitively, the size of the region of change relative to the 
Rayleigh resolution cell size is key.  Without loss of generality, we will assume the size 
of the change region is normalized relative to the size of a resolution cell. 

We wish to analyze our success in selecting the appropriate hypothesis between change, 
1H , and no-change, 0H .  We will use the conventional Neyman-Pearson detection 

criteria [SHAN88] of a detection decision relative to a choice of threshold.  Recalling that 
detection decision in CCD is the converse of what we typically find in radar, we will 
declare for 1H  if the estimated coherence is less than the choice of threshold.   In other 
words, we declare that a change has occurred in a region if ˆ thµ λ< , where µ̂ is the 
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estimated sample coherence7 for the pixel and thλ is the chosen threshold.  Otherwise, we 
will declare for 0H , or no-change, if ˆ thµ λ>  for that region within the CCD image. 

Following traditional radar convention, we declare that the probability of detection, DP , 
is the probability that we select 1H  when there is a coherence change present.  The 
probability of detection is therefore given by: 

 ( )ˆ , ,D th c qP P Lµ λ µ µ= ≤  (1) 

where cµ  is the population coherence of the change region we evaluate, qµ is the 
quiescent (or surrounding no change) population coherence, and L  the number of 
independent looks.  Note that the region which we evaluate for change can be larger or 
smaller than the true region of change.  In the true region of change we will assume that it 
has a population coherence of zero.  The justification for this assumption follows from 
[ZEBK92]  (and repeated in [PREI06]), which indicate that if the disturbance of the 
scatters results in an RMS “motion” of approximately 20% to 30% of a wavelength, we 
can assume total decorrelation. 

The error hypothesis of interest will be the probability of choosing hypothesis 1H when 
there is no change present, which is the probability of false-alarm, FAP .  The probability 
of a false-alarm is then given by: 

 ( )ˆ ,FA th qP P Lµ λ µ= ≤  (2) 

where FAP is the probability of false-alarm, and qµ is the population coherence of the no-
change (quiescent) region. 

4.2 Model 

This section discusses an analytical model of how resolution comes into play in CCD and 
uses this model to derive CCD performance as a function of resolution. 

As in [PREIS06], we come at this from a detection theory point of view.  The “target” 
signal that we wish to detect is decorrelated clutter and decorrelated noise between two 
SAR images, which we differentiate from a quiescent background of correlated clutter 
and decorrelated noise.  All resolution cells are assumed to be independent.  Following 
convention all clutter and noise will be assumed to be random variables drawn from 

                                                 

7 In this document the estimate of the coherence is referred to as the sample coherence and is 
designated with the “hat” or circumflex symbol, e.g. µ̂ .  The true coherence that we are trying to 
estimate is referred to as the population coherence and has no “hat”, e.g. µ . 
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complex circularly Gaussian distributions.  The assumption is made in this document that 
the clutter decorrelation process does not affect the average clutter backscatter 
magnitude. 

The detection problem in this analysis will be parameterized by SAR Rayleigh resolution  
and with the number of independent looks, L , used to estimate the coherence, as well as 
with the quiescent coherence.  The multilook resolution is implicitly a function of the 
Rayleigh resolution and the number of looks.  In fact as noted above, in this document we 
assume it is the product of these two parameters.  The probability of detection versus 
false-alarm rate as a function of the parameters and the detection threshold will be 
represented by ROC curves.   

The radar resolution comes into play in CCD by virtue of the fact that the number of 
resolution cells on the change region affects the coherence estimation performance.  If the 
change region is large with respect to the resolution, then we can achieve the number of 
independent looks we wish to achieve for good coherence estimation.  However, if the 
change region is relatively small with respect to the radar resolution, then the number of 
looks available in the change region is limited.  The choice of the number of looks is used 
to improve the estimation of the coherence of the quiescent background.  It sets the 
“multilook resolution”.  In CCD performance, if all else is equal, in theory finer 
multilook resolution allows for more independent looks for a given multilook resolution, 
which in turn leads to lower coherence variance.  A trade-off occurs when radar 
resolution is coarse and we want a specific number of independent looks to achieve a low 
variance.  Then the multilook resolution, or even the SAR resolution can become large 
with respect to the change region.  For this case, the multilook operation leads to a 
dilution in the no-change region due to attempting to estimate change coherence with 
data that includes both change and no-change.  Therefore, the no change region in our 
estimator is a mixture of change and no-change statistics.  We will address detection 
performance for the mixed and non-mixed coherence estimation in this document.  This 
will allow us to generalize the CCD performance with respect to resolution.  Obviously 
from the above discussion it is the size of the change region relative to radar resolution 
that is important, taken aside from all other considerations8.  Since this is the case, we 
repeat the above statement that without loss of generality we can consider all regions in 
this analysis normalized to the size of the SAR Rayleigh resolution. 

The model in this document considers the following cases:  1) changes at least as large as 
the multilook resolution (window size) used for coherence estimation; 2) changes larger 
than a SAR resolution cell, but smaller than a multilook resolution cell; 3) changes 
smaller than a SAR resolution cell.  The first will lead to no mixing.  The second case 
will lead to one type of mixing, that we will describe below.  The third case leads to a 
different type of mixing yet.  Hence, the reason for considering the three cases separately 
is because of the difference in the type of mixing that occurs in each case leads to 
different statistical models. 

                                                 
8 For example, assuming that the clutter-to-noise ratio is not affected by the change in resolution. 
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In the following subsections, we will present the results of the analytical model 
developed in the appendices for each of these resolution cases.  Although we will only 
present the results of the analytical models, as noted in the appendices we want to point 
out that the key to the mathematical model developed in this document is that regardless 
of the resolution case we will approximate the sample covariance matrix as a complex 
central Wishart distribution. 

4.3.1 Model with change region larger than multilook resolution9 

This subsection discusses the model under the assumption that the change region is large 
with respect to the multilook resolution size.  In this case, the probability density function 
(pdf) of the coherence function under the Gaussian assumptions is repeated from 
[TOUZ96]: 

  ( ) ( ) ( ) ( )( ) ( )22 2 2 2
2 1ˆ ˆ ˆ ˆ, 2 1 1 1 , ;1;

L L
p L L F L Lµ µ µ µ µ µ µ

−
= − − −  (3) 

with ( )2 1 , ; ;F a b c d being the Gauss hypergeometric function.  

A key assumption in the equation above is that the population coherence is stationary 
across the entire L look cell used for coherence estimation, i.e., the multilook resolution 
cell10.  Since we are limiting the model considered in this subsection to change and no-
change regions that are larger than the multilook resolution size, therefore we implicitly 
meet this requirement by assumption.   

The corresponding cumulative distribution from [CART73] for integer L is:  
  

( ) ( )
2 22

2 2 2
2 12 2 2 2

0

1 1ˆ , ,1 ;1;
1 1

L kL

th th th
kth th

P L F k Lµ µµ λ µ λ µ λ
µ λ µ λ

−

=

   − −
< = − −   − −   

∑  (4) 

Combining this equation with the fact that 0cµ =  for this case in equation (1) leads to a 
very simple formula for the probability of detection: 

 ( ) 121 1
L

D thP λ
−

= − −  (5) 

where thλ  is the chosen detection threshold for declaring a change has occurred when 
ˆ thµ λ< . 

Using equations (15) and (4) leads to the more complicated probability of false-alarm: 

                                                 
9 As noted in the appendix, this subsection follows [BICK15], which later was found to have unknowingly 
rederived a very similar methodology previously presented in the fine development in [PREIS06]. 
10 In fact, as will become evident, the reason for considering the model in these three parts is to partition 
the problem based upon adherence to this key assumption. 
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 ( ) ( ) ( )
2

2 2 2 2 2
2 1

0

1 1 1, ,1;
LL k

FA th q th th q
k

P F k Lλ µ λ λ µ
−

=

 = − − +  ∑  (6) 

where qµ  is the population coherence of the quiescent region. 

As noted in the Appendix C, there is a fairly nice recursive way to calculate equation (6).  
We will discuss these equations more in the section on implications. 

We observe at this point that the based upon the model we have described above, the 
quiescent region does not change characteristics for any of the three cases described 
above; therefore, the probability of false-alarm for all of the resolution cases in this 
document will adhere to equation (6). 

4.3.2 Model with change region smaller than the multilook resolution but 
larger than Rayleigh resolution 

In this subsection, we now consider the case where the change region is a subregion 
within the multilook area for estimating the coherence.  In other words, the change region 
is smaller than a multilook resolution cell, but larger than the SAR Rayleigh resolution 
cell size11.  This case becomes much more complicated because we now violate the key 
assumption about stationarity of the coherence within our estimation window.  We are 
mixing two different statistics within the estimation multilook resolution cell.  This 
dictates we consider the realm of linear combinations in statistics.  It is distinctly possible 
that an exact analytical solution to this problem does not exist; however we will use an 
approximation that has been developed in this field and discussed in the appendices.  
Limitations on the approximation will be discussed in the implications section that 
follows.  

In this part of the CCD model we assume that the multilook resolution cell that we are 
using to estimate the coherence contains L SAR resolution cells of which k SAR 
resolution cells have the quiescent population coherence of qµ , and L k= − have the 
change population coherence of 0cµ = .  The result is that the coherence estimator for the 
L SAR resolution cells attempts to operate where there is a combination of the change 
and no-change resolution cells.  We need to deal with this violation of the assumption 
which we made in the previous subsection.   

From the discussion in Appendix A and C, we can use the multivariate Satterthwaite’s 
approximation for the probability density function for this mixed coherence region which 
from the appendix permits us to use equation (3) via an approximate mixed population 
coherence and an approximate number of looks.  The result is given by: 

                                                 
11 To simplify what will become a rather complex analysis, we will make the assumption that the true 
change area is still some integer,   , multiple of SAR resolution cells, L k= − , where 1 L≤ < . 
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( )( ) ( ) ( )( )2 222 2 2 2
2 12 2ˆ ˆ ˆ ˆ, 2 1 1 1 , ;1;q q q

k kp k L F
L L

ν
ν

µ µ ν ν µ µ µ ν ν µ µ
−   

≈ − − −   
   

 (7) 

where the approximate change population coherence is ( )c qk Lµ µ≈ ; k , L  , and qµ are 
defined above and the approximate number of looks is ν  is given by: 

2
2

1 3

2 2
2

2

1

1
1 1 4

1

q

q q

q

k
L

L
k

k k L
L L k

L

µ
ν

µ µ
µ

  −  
   ≈

  −        − +         −    

 (8) 

It can be observed that if k L= , which is the same as saying the change region equals the 
multilook resolution cell size, then Lν =  and we end up with the same as equations as 
were already presented in the previous subsection, where we assumed that change region 
was at least as large as a multilook resolution cell size12. 

The equations in this subsection describe the probability within the multilook resolution 
cell that contains change.  Therefore these equations are used to estimate the probability 
of detection which replace equation (5) above.  It is also important to note that the 
probabilities in the quiescent (no change) regions do not change13.  Therefore the 
probability of false-alarm still follows equation (6) above.  

Before proceeding we wish to highlight an important point of the approximating model 
which is briefly discussed in Appendix A.  Notice that one of the results of this choice of 
approximation leads to the change population coherence being a simple linear weighting 
of the coherences contained within the multilook resolution cell, i.e.,: 

c q
k
L

µ µ ≈  
 

 (9) 

This population coherence plays a major role in the change region statistics.  It, along 
with the number of independent looks, sets the distribution within the change region.  In 
particular, it tends to have a large influence on the mean of the coherence within the 
change region. 

                                                 
12 Note that if 0qµ =  (which is not useful for analysis purpose) then we also end up with Lν = , which 

is only a restatement of a known property of the central Wishart distribution (see Appendix). 
13 So important, that we will repeat and belabor this point a few times within this document. 
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As in the previous subsection, for the ROC curves we need the cumulative distribution.   
For this case, in general theν value of is not an integer.  It does not need to be an integer 
for the probability density function equation to be valid; however, it does need to be an 
integer in order to use the cumulative distribution equation above.  Appendix C discusses 
a couple methods for handling this issue.  

4.3.3 Model with change region less than Rayleigh resolution 

In the case which now follows, we consider a subset (or superset, depending upon your 
view point) of the previous subsection, which is the case where the size of the change 
region is less than a radar (Rayleigh) resolution cell.  We still have mixing of population 
coherences that occurs, but in this case we not only have mixing of two population 
coherences within a multilook resolution cell, as in the previous subsection, but also a 
mixing within a Rayleigh resolution cell.  There is a distinct difference between the latter 
mixing and the former mixing.  In the former case, the mixing occurs during, or more 
precisely, because of the coherence estimation process.  The latter occurs prior to the 
coherence estimation process.  The former mixing dilutes the coherence estimator, but 
does not affect the change population coherence within the  change only resolution 
cells14.  The population coherence in those cells is still zero.  Conversely, when the 
change region is smaller than the Rayleigh resolution, the population coherence for the 
change region is diluted.  The result is that we must repeat the analysis from the previous 
subsection, for 1=  but this time 0cµ ≠ .   

At this point, recall that we have chosen to normalize regions to the Rayleigh resolution 
cell size, c RρΓ = Γ .  Therefore for this case we have that the size of the change region, 
Γ , becomes the fraction of the Rayleigh resolution cell that contains change.  From the 
appendices, this results in an approximate change population coherence within the 
multilook resolution cell in this case of: 

1c qL
µ µΓ = − 

 
 (10) 

The number of looks for this case is very complicated.  The method for finding the 
number of looks is outlined in Appendix C. 

  

                                                 
14 This is the reason for the previous assumption of an integer value for  and k  . 
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5. Adjustment to the analytical model 
Key concepts in this section:  We can think of the model in the previous section as a “fit” of a statistical 
model to certain parameters.  In the multivariate case, we have several parameters from which to choose to 
set the fit.  This section briefly discusses a more heuristic alternative choice. 

In this section we very briefly discuss an alternative to the analytic model presented in 
the previous section (refer to Appendix B).  This is a slight adjustment to the model 
where we use a different parameter for the “fit”.  We maintain the assumption of a central 
Wishart distribution for the mixed population coherence from the previous section.  The 
difference is that we fit the degrees-of-freedom, also known as the effective number of 
looks in a different manner.  We suggest that we fit the number of looks by matching the 
variance of simulated data to that of sample coherence that is not mixed.  As in the 
previous case, we assume that the population coherence is the same linear weighting of 
the two mixed coherences. 

We note that we mention this adjustment in just a few places in this document and make 
only limited further use of it. 
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6. Implications from the analytical model 
Key concepts in this section:  The analytical model for smaller change regions presented above is an 
approximation, which although not perfect is reasonable.  Note that it is only the probability of detection 
and not the probability of false-alarm that changes with resolution in this model for a fixed quiescent 
coherence and number of independent looks.  If all other things are equal, under the assumptions of this 
model and other practical considerations, there is benefit for detection in estimating the coherence over the 
entire change region.  Independently, there is benefit for reducing false-alarm by using a very large window 
for estimating the coherence of the quiescent (no change) region. 

This section shows results of using the model and what it reveals about the CCD 
performance as a function of resolution for the three resolution cases of the model that 
were discussed in the previous section.  This section also discusses the limitations of the 
CCD model due to approximations in the math.   

In the following subsections, we now examine the effect of resolution on CCD based 
upon performance given by ROC curves developed from our model.  We provide 
comparison of the model with simulation results.  We start by examining the model for 
each of the three cases of the model.  We follow this with a more general discussion of 
the implications of the model as a whole.    

6.1 Results and implications for model with change region larger than 
multilook resolution 

The first case we examine is the case when the change region is larger than the multilook 
estimation window size.  As noted in the appendix, although this analysis was developed 
independently, it follows very closely with the previous results found in [PREI06].  The 
equations for the ROC curves for this case are given by equation (5) and equation (6) 
above.  Based upon these equations, the following Figure 3 through Figure 7 show the 
ROC curves for different numbers of independent looks.  Be sure to pay attention to the 
scale of the abscissa.  
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Figure 3: ROC curve for L=7 independent look for the case where the change region is 

larger than the multilook resolution ( LΓ ≥ )  

 
Figure 4: ROC curve for L=9 independent look for the case where the change region is 

larger than the multilook resolution ( LΓ ≥ )  
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Figure 5: ROC curve for L=15 independent look for the case where the change region is 
larger than the multilook resolution ( LΓ ≥ ) 

 
Figure 6: ROC curve for L=25 independent looks for the case where the change region is 

larger than the multilook resolution ( LΓ ≥ ) 
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Figure 7: ROC curve for L=49 independent looks for the case where the change region is 

larger than the multilook resolution ( LΓ ≥ ) 

An obvious observation from the figures is that increasing the number of independent 
looks improves the ROC curve performance.  Since we have assumed in this document 
that the multilook resolution cell size is ML RLρ ρ= , and we have assumed for this case 
that the change region is at least the size of a multilook resolution cell; therefore, these 
imply that if we wish to improve the DP  / FAP  we need to either consider larger regions of 
change, or go to finer radar resolution. At this point we recognize that we have not 
presented the entire story for all of the cases; however, intuitively we expect these 
implications will continue to prevail. 

For this case, it is very simple from equation (5) to set a specific probability of detection 
for a given number of independent looks by solving for the threshold as: 

 ( ) ( )1 11 1 L
th DPλ −= − −  (11) 

Unfortunately, in detection it is usually more important to fix the probability of false-
alarm rather than the probability of detection.  This leads to a common technique in 
detection theory called constant false-alarm rate (CFAR).  In CCD, the false-alarm rate is 
a function of the number of independent looks, and the quiescent population coherence of 
the surrounding clutter, qµ .  Typically we have little control of qµ other than taking care 
to keep it as high as possible [BICK14].  In standard CFAR, we adjust the threshold 
based upon the estimated background noise.  The analog of the background noise in CCD 
is the quiescent coherence statistics of surrounding cells.  However, in CCD, we can 
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control the false-alarm rate not only through the statistics of the surrounding cells but also 
the number of looks.  Unlike in standard CFAR we will show that we can maintain the DP  
if we adjust the number of looks.  

Solving for this CFAR condition is complicated by the transcendental equation (6).  We 
do this numerically in Figure 8 to show the resulting DP given the required quiescent 
population coherence required to meet a constant false-alarm rate of 510FAP −=  for 15 and 
25 independent looks. 
 
We noted above that we can also perform CFAR in this case by adjusting the number of 
independent looks based upon the estimate of µ  surrounding the detection area15.  In 
theory this should permit maintaining the DP  in the presence of CFAR.  There is 
additional cost of loss of multilook resolution, and guard cell size, etc.  An example of 
this is illustrated in Figure 8.  We plot the number of independent looks required versus 
the population coherence of the clutter to maintain a fixed 0.9DP = with either a fixed

510FAP −= (blue line) or 610FAP −=  (red line). 

Recall that the false-alarm rate is only a function of the quiescent population coherence 
and the number of looks; therefore, the preceding CFAR concepts apply to all of the 
resolution cases.  The difference will be that increasing the number of looks may push us 
into one of the other resolution cases which affects our consideration of the probability of 
detection. 

6.2 Results and implications for model with change region smaller than the 
multilook resolution but larger than Rayleigh resolution 

The implications of the previous subsection are that increasing the number of looks, L , 
improves probability of detection and probability of false-alarm.  While it is true that 
increasing the number of looks reduces the false-alarm rate, it also coarsens the multilook 
resolution.  At some point increasing the number of looks will increase the multilook 
resolution to the point where it becomes larger than the change region.  When this occurs 
we violate the assumption that the change region is larger than or equal to the multilook 
resolution.  We need to consider the second case of the model. 

In this subsection, we consider the model case where the change region is smaller than 
the multilook resolution cell but larger than the SAR Rayleigh resolution cell size.  This 
implies that applying the multilook window to estimate coherence in the region of change 
will contain both change and no-change statistics which dilutes the probability of 
detection.  Based upon this, we will anticipate a loss of performance which we should be 
able to recover by finer resolution, all other things remaining equal. 

                                                 
15 Adjusting the number of looks is not a new concept and has been suggested years ago for 
interferometric SAR applications.  I have not seen it applied to CFAR detection in CCD before now.  
However, certainly these concepts are related. 
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Figure 8:  Probability of detection vs clutter coherence for fixed 510FAP −=  

with 15L =  and 25L =   

 
Figure 9:  Number of independent looks to maintain 0.9DP =  and FAP  versus

qµ   
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Before we look at the results of the model for this case, recall that our model for 
probability of detection is based upon an approximation to the distribution in this region 
that mixes samples from the change population with samples from the no change 
population.  We wish to briefly examine how well the approximating probability 
describes the true probability.  We do this by comparing the approximating distribution 
with results from simulation.  We look at the distributions for varying values of  from 
L  , i.e., the fraction of the multilook resolution cell which is drawn from the change 
population.  We also examine this approximation as a function of the quiescent 
population coherence. 

We offer up Figure 10 as a representation of what we generally see in the approximations 
in the form of the cumulative distribution function.   For the Satterthwaite method 
discussed in the subsection 4.3.2 and appendices, the approximation curve crosses the 
simulated curve near the mean mixed value and is symmetric about the simulated curve.  
The slope of the approximation is steeper than the simulated data near the mixed mean 
value.  This leads to the approximation being slightly optimistic for higher values of the 
estimated coherence, and slightly pessimistic for lower values of the estimated coherence. 

The matched variance method from Section 5 crosses closer at the edges of the curve, 
rather than the middle.  The slope is flatter than the simulated data in the middle, and it 
tends to be more conservative. 

I have noticed the general trends stated above for various simulations.  It is important to 
note that Figure 10 does not indicate that one method or the other is always better, or that 
one or the other may be much different than the simulated data.  Since this is the case, we 
will focus on the Satterthwaite’s multivariate approximation and recognize for the higher 
values of the probability of detection it can be optimistic16. 

Recall according to equation (9) that the population coherence for the change region is a 
weighted function of the number of change resolution cells within a multilook resolution 
cell.  To emphasize this, Figure 11 illustrates this for the case of 0.9qµ =  and 25L =  
with varying values the change area,Γ =   where 1 L< < .  Note that the slope of this 
curve is proportional to the quiescent population coherence, qµ , due to the weighting. 

The result of the increase in change population coherence is that detection probability is 
reduced.  This reduction is a function of the quiescent coherence; however, as we saw in 
the previous subsection, the probability of false-alarm decreases when this occurs.  We 
will examine this relationship more in a moment. 

                                                 
16 The reason for this choice might be considered somewhat arbitrary, but is used because it is based 
upon a known mathematical approximation and that it has a consistent mathematical formulation. 
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Figure 10:  Cumulative distribution of ˆcµ  from simulation versus approximations

 
Figure 11: Plot of change population coherence versus normalized size of change region 

out of an 25L = look multilook resolution cell 
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Figure 12 illustrates the effect on detection performance as the fraction of the of the radar 
resolution cells which contain change within a multilook resolution, L , decreases.  As 

L decreases the change region within the multilook estimator becomes more diluted 
with surrounding quiescent coherence (radar) resolution cells.  From the figure, as L
decreases, the false-alarm rate increases fairly dramatically for a given detection 
probability.  As noted above, it is not really the false-alarm rate that has changed; rather, 
it is that the threshold had to be increased dramatically to maintain a given probability of 
detection.  We also recall that for typical detection implementations we wish to maintain 
a constant false-alarm rate, which leads to a significant reduction in probability of 
detection as the change region becomes more diluted within the multilook estimation 
window. 

We continue our investigation further by next looking at the results with a quiescent 
population coherence, 0.7qµ = while maintaining the same number of looks, 25L = .  
This is depicted in Figure 13.   

An interesting note is that for a given threshold and dilution, i.e., L , the probability of 
detection is actually better for the 0.7qµ =  than for the 0.9qµ = .  Recalling discussion 
from above, this is because the change population coherence is proportional to the 
quiescent population coherence for a given L .  The result is that the change coherence 
dilutes at a slower rate when mixed with a lower quiescent coherence, and vice versa, it 
dilutes at a faster rate when mixed with a higher quiescent coherence.  The result is that 
probability of detection is more corrupted when then surrounding coherence is higher and 
the multilook resolution cell is larger than the size of the change region.  However, as it 
was observed in the previous subsection, the probability of false-alarm increases at a 
faster rate when the quiescent coherence is lower.  The combined result is a loss in the 
ROC curve performance in the lower background coherence case. 

Before leaving this section, we want to compare this case with the previous case.  The 
next few figures show the 25=  (i.e.,the previous case where the change regions is at 
least as large as the multilook resolution),  24= , 23= and for different population 
coherence values and 25L = .  These plots use the approximation for 25< .  Even 
though we have shown that the approximation is slightly optimistic, from these figures 
the relative behavior is generally what we would intuitively expect. 

We will consider more about this case in the subsection on implications. 
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Figure 12: Plot of ROC curve for varying (normalized) size of the change for 0.9qµ =  

and 25L =  

 
Figure 13: Plot of ROC curve for varying (normalized) size of the change for 0.7qµ =  

and 25L =  
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Figure 14:  Plot of ROC curve for varying (normalized) size of the change crossing the 

three cases of the model for 0.9qµ =  and 25L =  

 
Figure 15:  Plot of ROC curve for varying (normalized) size of the change crossing the 

three cases of the model for 0.8qµ =  and 25L =  
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6.3 Results and implications for model with change region smaller than the 

Rayleigh resolution 

In this subsection, we consider the model case where the change region is smaller than 
the SAR Rayleigh resolution cell size.  This leads to even further dilution of the 
probability of detection.  Again, we anticipate loss of detection performance that can be 
improved with finer resolution. 

We argued above that when the change region is smaller than the radar Rayleigh 
resolution cell size, the mixing mechanism is slightly different.  The mixing within the 
radar resolution affects the coherence prior to the coherence estimation.  This changes the 
statistics.  To illustrate this further, we consider the following.  Assume that some 
fraction of the radar resolution cell, 1Γ < , contains changes between two images.  
Assume that the quiescent coherence is qµ .  Then given the key assumption that each 
radar resolution cell within the multilook estimation cell has this same fraction of change, 
the probability density function is given without approximation by equation (3) with 
population coherence, ( )1 qµ− Γ , and L looks.  Although we will not show it here for 
some semblance of brevity, simulation bears this out.   

The approximation from the previous subsection still comes into play due to the fact that 
we will assume that only one radar resolution cell within the multilook resolution cell 
contains change.  Therefore, Satterthwaite’s approximation is used again with the 
weighted population coherence of the change within the multilook resolution cell is that 
given previously in equation (10). 

As in the previous subsection, we start by looking at the effects of the approximations 
made in deriving the probability distribution in this “mixed” region.  Figure 16 shows the 
approximation versus simulation for the case where the change region only covers half of 
a radar Rayleigh resolution cell.  The results are shown for 0.9qµ = and 0.7qµ = .  Again 
this figure shows that the Satterthwaite’s approximation is slightly optimistic but 
reasonable in this case. 

 

The following figures compare the results of 1Γ =  (or 1=  which is when the change 
size is one radar resolution cell) versus 0.5Γ = (which is change size of one half of a 
radar resolution cell).  As in the previous subsection, these plots use the model.  Again, 
these plots follow our intuition as far as the relative behavior of the two different cases. 

We want to defer the rest of the analysis of the model for this case to the next section 
where we will evaluate this case against the other cases. 
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Figure 16:  Cumulative distribution of ˆcµ  from simulation versus approximation for 

0.5Γ = and varying qµ

 
Figure 17:  Plot of ROC curve for 1Γ =  (i.e., 1=  or change size is one radar resolution 

cell) and 0.5Γ =  (i.e., change size is one half of a radar resolution cell) model for 
0.9qµ =  and 25L =  
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Figure 18:  Plot of ROC curve for 1Γ =  (i.e., 1=  or change size is one radar resolution 
cell) and 0.5Γ =  (i.e., change size is one half of a radar resolution cell) model for 

0.7qµ =  and 25L =  

 
6.4 General implications 

In this subsection we consider the model as a whole.  With apologies for repetitiveness, it 
is still important to remember that the probability of false-alarm does not change for the 
different cases.  It is only the probability of detection that changes.   

From the previous discussion, it is obvious that detection performance is affected by 
increasing the number of looks.  Increasing the number of looks in the quiescent region 
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Therefore, improving resolution in this case can improve change detection.  This was 
illustrated in Figure 9. 
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population coherences.  We present an extended sequence of figures where each figure 
represents a specific no-change population coherence, qµ , and a specific (normalized) 
size of the change region, Γ =  in this case, for varying multilook resolution cell sizes, 
L  .  In general the results are complicated, which is another way of saying that they are 
interesting and revealing.   

We now consider a modest number of results from applying the model.  Figure 19 shows 
the case for 1Γ =  and 0.9qµ = .  Figure 20 shows the case for 1Γ =  and 0.8qµ = .  
Figure 21 shows the case for 1Γ =  and 0.7qµ = . 0.8qµ = .  Figure 22 shows the case for 

1Γ =  and 0.6qµ = .  Figure 23 shows the case for 1Γ =  and 0.9qµ =  .  Figure 24 shows 
the case for 1Γ =  and 0.8qµ = .  Figure 25 shows the case for 1Γ =  and 0.7qµ = . 

0.8qµ = . Figure 26 shows the case for 1Γ =  and 0.6qµ = .  Figure 27 shows the case for 
5Γ =  and 0.9qµ =  .  Figure 28 hows the case for 5Γ =  and 0.8qµ = .  Figure 29 shows 

the case for 5Γ =  and 0.7qµ = .  Figure 30 shows the case for 5Γ =  and 0.6qµ = .  
Figure 31 shows the case for 9Γ =  and 0.9qµ = .  Figure 32 shows the case for 9Γ =  
and 0.8qµ =  .  Figure 33  shows the case for 9Γ =  and 0.7qµ = .  Figure 34 shows the 
case for 9Γ =  and 0.6qµ = .  Figure 35 shows the case for 16Γ =  and 0.9qµ = .  Figure 
36 shows the case for 16Γ =  and 0.8qµ =  .  Figure 37 shows the case for 16Γ =  and 

0.7qµ = .  Figure 38 shows the case for 16Γ =  and 0.6qµ = .  Figure 39 shows the case 
for 25Γ =  and 0.9qµ = .  Figure 40 shows the case for 25Γ =  and 0.8qµ =  .  Figure 41 
shows the case for 25Γ =  and 0.7qµ = .  Figure 42 shows the case for 25Γ =  and 

0.6qµ = .  In all of these figures, be sure to note the scale of the axes in order to 
understand the relative behaviors. 

We point out some general observations from plots using the model.  First, there is 
obvious loss of performance as the quiescent population coherence goes down.  Second, 
there is an obvious improvement in the performance as the change region gets larger.  
Since the key parameter is the size of the change region relative to the radar resolution, 
this in turn means that if all other considerations are equal, finer resolution increases Γ
and therefore improves CCD performance.  Third, the optimum number of looks changes 
depends upon the size of the change regions, Γ .  As a rough rule-of-thumb, it appears 
that the optimum number of looks is around 1.5 to 2 times the change region size17. 

A few more nuanced observations are discussed.  The ROC curve performance is not as 
strong of a function of number of looks when the quiescent population coherence is 
reduced.  Also, the ROC curve is steeper as the change region size approaches the 
multilook resolution cell size, i.e., as 1LΓ →  .   

                                                 
17 It appears that a minimum of 4L = is needed to keep the false-alarm rate low. 
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We briefly return to the rule-of-thumb, which is just a rough rule-of-thumb.  At first 
blush, it is a little surprising that this indicates that a small amount of mixing of change 
with the no change is reasonable.  What is happening is that for the case where the 
multilook resolution cell size is close to the change region size, increasing the number of 
looks improves the false-alarm rate faster than it reduces the probability of detection.  
This does make sense from the perspective that for the change region the coherence is 
low, which leads to higher bias and variance in the estimator for this region.  Therefore a 
small increase in the population coherence when it is near zero coherence does not create 
a large change in the probability density function. 
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Figure 19:  Plot of ROC curve for 1Γ =  (i.e., 1= ) for 0.9qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  

 

Figure 20:  Plot of ROC curve for 1Γ =  (i.e., 1= ) for 0.8qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  
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Figure 21:  Plot of ROC curve for 1Γ =  (i.e., 1= ) for 0.7qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  

 

Figure 22:  Plot of ROC curve for 1Γ =  (i.e., 1= ) for 0.6qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  
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Figure 23:  Plot of ROC curve for 3Γ =  (i.e., 3= ) for 0.9qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  

 

Figure 24:  Plot of ROC curve for 3Γ =  (i.e., 3= ) for 0.8qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  
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Figure 25:  Plot of ROC curve for 3Γ =  (i.e., 3= ) for 0.7qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  

 

Figure 26:  Plot of ROC curve for 3Γ =  (i.e., 3= ) for 0.6qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  
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Figure 27:  Plot of ROC curve for 5Γ =  (i.e., 5= ) for 0.9qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  

 

Figure 28:  Plot of ROC curve for 5Γ =  (i.e., 5= ) for 0.8qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  
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Figure 29:  Plot of ROC curve for 5Γ =  (i.e., 5= ) for 0.7qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  

 

Figure 30:  Plot of ROC curve for 5Γ =  (i.e., 5= ) for 0.6qµ =  and varying number of 

looks, { }6,9,16,25,36,49L =  
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Figure 31:  Plot of ROC curve for 9Γ =  (i.e., 9= ) for 0.9qµ =  and varying number of 

looks, { }9,16,25,49L =  

 

Figure 32:  Plot of ROC curve for 9Γ =  (i.e., 9= ) for 0.8qµ =  and varying number of 

looks, { }9,16,25,49L =  
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Figure 33:  Plot of ROC curve for 9Γ =  (i.e., 9= ) for 0.7qµ =  and varying number of 

looks, { }9,16,25,49L =  

 

Figure 34:  Plot of ROC curve for 9Γ =  (i.e., 9= ) for 0.6qµ =  and varying number of 

looks, { }9,16,25,49L =  
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Figure 35:  Plot of ROC curve for 16Γ =  (i.e., 16= ) for 0.9qµ =  and varying number 

of looks, { }16,25,49L =  

 

Figure 36:  Plot of ROC curve for 16Γ =  (i.e., 16= ) for 0.8qµ =  and varying number 

of looks, { }16,25,49L =  
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Figure 37:  Plot of ROC curve for 16Γ =  (i.e., 16= ) for 0.7qµ =  and varying number 

of looks, { }16,25,49L =  

 

Figure 38:  Plot of ROC curve for 16Γ =  (i.e., 16= ) for 0.6qµ =  and varying number 

of looks, { }16,25,49L =  
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Figure 39:  Plot of ROC curve for 25Γ =  (i.e., 25= ) for 0.9qµ =  and varying number 

of looks, { }25,36,49,64L =  

 

Figure 40:  Plot of ROC curve for 25Γ =  (i.e. 25= ) for 0.8qµ =  and varying number 

of looks, { }25,36,49,64L =  
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Figure 41:  Plot of ROC curve for 25Γ =  (i.e., 25= ) for 0.7qµ =  and varying number 

of looks, { }25,36,49,64L =  

 

Figure 42:  Plot of ROC curve for 25Γ =  (i.e., 25= ) for 0.6qµ =  and varying number 

of looks, { }25,36,49,64L =  
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7. Other considerations 
Key concepts in this section:  The proposed analytical model is a simplification of the general case, much 
like Swerling models for radar detection.  As in the latter, this model is useful as long as the limitations are 
considered.  Also, as with the Swerling models, this model can be extended to other cases, although we do 
not do so in this report. 

The model developed above gives an analytic method for evaluating the effect of 
resolution on CCD.  There are other considerations in practical detection in CCD. 

In the model, false-alarm rates are assumed to be due to the statistical properties of a 
quiescent background which is assumed to be sampled from a population with a constant 
coherence.  In a practical situation, the population coherence within the CCD image 
varies due to varying backscatter, shadows, vegetation, radar processing issues, etc.  
These are likely to be a more prevalent source of false-alarm and need to be handled in 
some manner. 

Another important difference is that in this model we consider detection with only a 
single consistent change region.  In a practical CCD images, the “tell” for change is a 
pattern of multiple resolution cells that have some indication of some specific type of 
change. 

Similarly, in human interpretation of data, the person will perform additional averaging 
and interpretation that assists in reducing the probability of false-alarm from their 
perspective.  For example, if there is a modest change region in large region of no-
change, the human interpreter will naturally average over the no change region well 
beyond the number of looks used in the multilook window for coherence estimation.  In 
this respect the model presented in this document is limited. 

In spite of each of these practical issues, the author argues that the basic model presented 
above is valuable for system design and operates much as ROC curves are valuable for 
standard radar detection.  In some sense, the discussion in this document is similar to 
Swerling’s models for radar detection. 
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8. Conclusions and Summary 
This report has developed a model for the effect of resolution on coherent change 
detection.  This document is intended to support the understanding of coherent change 
detection (CCD) for radar system designers and allow them to make performance trade-
offs. 

A few results from this document are summarized here in no order of pre-eminence: 

1) Resolution is a key parameter in CCD performance.  There are two different 
resolutions to consider in CCD:  1) the SAR resolution; and 2) the size, or 
resolution, of the multilook estimation window. 

2) CCD is a detection process; therefore, evaluating the the receiver operating 
characteristic (ROC) curve as a function of resolution is a reasonable measure of 
the performance. 

3) We want as many looks as possible on both change and no-change regions, which 
means if all else is equal, finer resolution improves CCD performance. 

4) It is the size of the change region normalized by the radar resolution that sets the 
number of independent looks and therefore this sets CCD performance. 

5) A limited amount of mixing of the change and no-change within the multilook 
estimation window where possible does not hurt CCD performance. 

6) Only the quiescent coherence, along with the number of looks, influences the 
probability of false-alarm.  It is important for the radar to maintain the 
background (quiescent) coherence as high as possible, without artificially 
inflating it. 
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10. Appendix A:  Model for resolution analysis 
This appendix contains the math for the model of resolution and coherence presented in 
this report.  The first part of this appendix provides a general discussion of the model.  
The second part presents the mathematical model for the case where the change region is 
larger than the multilook area.  The third derives the mathematical model when the 
change region is less than the multilook area. 

Note that the key to the analysis of performance in the main body of this report is the 
receiver operating characteristic (ROC) curves to describe detection as a function of 
coherences and resolution.  Therefore, in this appendix we need to derive the cumulative 
probability density model. 

10.1 General analysis discussion for the model 

The analysis in this document is about detection of change in CCD as a function of 
resolution.  In CCD we are interested in the detection of a disturbance that leads to a 
change in coherence relative to the undisturbed quiescent background.  Generally we 
want to detect this coherence change.  To quantify the detection process, we are 
interested in employing receiver operating characteristic (ROC) curves.  These are plots 
of the probability of detection versus probability of false-alarm for varying parameters.  
The parameters of interest in this document include the size of the change region, the 
population coherence of the no-change (quiescent) region, multilook resolution cell size, 
and Rayleigh resolution cell size. 

As a brief review, the ROC curves follow from classic Neyman-Pearson detection theory 
[SHAN88].  In this detection theory, we make a decision in favor of one hypothesis, 1H , 
or the other, 0H , based upon our test statistic, ( )zΛ , being greater than, or less than a 
specific threshold, thλ .  This is written as: 

 ( ) ( )
( )

1

1

0

0

th

H
p z H

z
p z H

H

λ
>

Λ =
<

 (12) 

Figure 43 illustrates this detection process. 

The probability that we chose 1H correctly is referred to as the probability of detection.  
In radar, the main error probability that we are usually interested in is the probability of 
false-alarm.  This is the probability that we chose 1H given that 0H  has occurred.  The 
ROC curves convey the probability of detection versus false-alarm for varying threshold, 
and distribution parameters.   
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Figure 43: Cartoon illustrating Neyman-Pearson detection for standard radar detection 

In CCD, the test statistic is the estimated (sample) coherence, µ̂ , over the multilook 
estimation region.  For standard radar detection theory, the distribution parameter 
information is contained in the signal-to-noise ratio (SNR); however, for the distribution 
of the CCD test statistic we will be interested in the population coherence18 and the 
number of independent looks.  

Note that the classic Neyman-Pearson detection problem is transposed for CCD.    In 
typical Neyman-Pearson detection problems, we want to detect objects above some 
threshold.  In CCD, we want to detect the loss of coherence due to a change.  The classic 
detection hypotheses relationship is commuted because we will want to detect coherence 
below some threshold.  In addition, for standard radar ROC curves the signal-to-noise 
ratio (SNR) is adequate for defining the separation between the hypotheses.  In CCD the 
separation of between hypotheses is a function of both the number of independent looks 
and the population coherence.                     

The probabilities are required for generating ROC curves, specifically we need the 
cumulative distribution function for coherence as a function of the population coherence, 
the number of independent looks, and the coherence threshold.  The development of the 
probability function for coherence was first done by Fisher in 1921 [FISH21].  A more 
convenient derivation for us will be the development in terms of the central Wishart 
distribution for the sample covariance matrix based on bivariate complex circularly 
Gaussian clutter and noise in [TOUZ96]. 

                                                 
18 Signal-to-noise ratio plays a role in the population coherence but is not the only factor (see [BICK14] 
and reference therein). 
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The fundamental parameters in the (complex) central Wishart distribution function are 
the degrees-of-freedom, ν , and the scale (or diffusion) matrix, Σ .  The (complex) 
Wishart distribution of the sample covariance matrix (under the bivariate circularly 
Gaussian, etc. assumption) then is written as ( )~ ,W νS Σ .  It becomes obvious that the 
Wishart distribution is defined by the knowledge of these two parameters.  For our zero-
mean bivariate case, the scale matrix, Σ , is given by19:   

 
2
1 1 2

2
1 2 2

σ µσ σ
µ σ σ σ∗

 
=  
 

Σ  (13) 

From the development in [TOUZ96], if the covariance matrix follows the central Wishart 
distribution, then the probability density function of the (sample) coherence follows 
directly from knowledge of parameters of this Wishart distribution.  In particular, if we 
know ν and µ (the population coherence) in equation (13) for the Wishart distribution 
then we can use the equation in [TOUZ96] to yield the probability distribution of the 
sample coherence.   

The original solution for the cumulative distribution with ν  an integer was presented in 
[FISH28].  We will use the version from [CART73] in this document. 

Generally, we will assume that the change region area has a population coherence of 
zero, designated as 0cµ = .  We will assume that the no change, or quiescent area has a 
population coherence of qµ , which is between 0 and 1. 

10.2 The proposed model 

We have seen from the previous section that the fundamental parameters for detection in 
CCD are the degrees-of-freedom, ν , and the population coherence, µ , from the scale 
matrix Σ .  For the purposes of the report then, we need to understand the behavior of 
these parameters as a function of size of the change region relative to the resolution size.   

In coherent change detection (CCD), there are actually two different resolutions of 
interest.  The first resolution is the synthetic aperture radar (SAR) Rayleigh resolution.  
This is the resolution that normally comes to mind.  The second resolution is the size of 
the averaging area used to estimate the coherence, which is related to the number of 
looks.  Note that resolution is typically thought of as a linear measure; however, in CCD 
it is the resolution area that is important.  Figure 44 illustrates the two different 
resolutions. 

The size of the change region with respect to these resolution areas will be a key variable.    
A simple thought experiment says that the more samples we can observe that have 

                                                 
19 Note that the scale matrix is also the true covariance matrix in this case. 
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changed (and that have not changed), the better detection decision we will be able to 
make, so this makes intuitive sense.  Without loss of generality in this model, we can 
normalize all resolution area measures relative to a single SAR Rayleigh resolution cell 
area. In addition, we will assume that the change area is relatively small with respect to 
the non-change area.  

Based upon this discussion, we have decided to simplify the analysis by separating our 
model into two general cases.  The first case assumes that the region of change at least 
covers an entire multilook resolution area.  In fact we will assume that it is exactly one 
multilook resolution size.  The second case is where the change area covers less than a 
multilook resolution area.  This second case also includes the case where the change area 
is less than a radar Rayleigh resolution area.  The reason for this differentiation will 
become apparent from discussion later in this appendix. 

The terminology used in this appendix includes the SAR Rayleigh resolution cell (area) 
which is designated Rρ  and which we normalize to 1Rρ = without loss of generality.  
The multilook (CCD estimation “box”) size is then designated ml RL Lρ ρ= = .  We also 
designate the change region area as cΓ , which when normalized by Rρ (i.e., we 
normalize to 1Rρ = )is written as c RρΓ = Γ .  The model is then split into LΓ ≥  (again, 
we really consider LΓ = ) or LΓ < .  To be even more specific, for our analysis we will 
be really be partitioning the cases into change regions that cover the whole multilook 
resolution cell, versus change regions that cover a partial multilook resolution cell.  
Included in the latter is the case where the change covers a partial Rayleigh resolution 
cell.  Therefore, although we will generally not consider it in our analysis, the shape of 

cΓ , as well as the area it covers, will be important.  Figure 45 shows the two cases for the 
regions of change that we consider in this appendix.  We will proceed under this 
understanding. 

 

Rayleigh 
resolution 

Multilook 
resolution

 

Figure 44:  Illustration of two resolutions in CCD in terms of image pixels 
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Figure 45:  Two different change region cases (a) change covers an entire multilook 

resolution cell; (b) change covers a partial multilook resolution cell 

It is important to note that regardless of the change region case being considered above 
for a given threshold the probability of false-alarm does not change since we always 
assume a large quiescent region.   However, the probability of detection does change 
between the different cases because we dilute the change region when the change region 
is smaller than a multilook resolution cell size. 

Before proceeding on to the discussion of the different change regions, we want to note 
that the key to the mathematical development in this document is that regardless of the 
resolution case, we will assume that the sample covariance matrix can be adequately 
approximated as a central Wishart distribution.  From the discussion above this means it 
suffices to generate the degrees-of-freedomν , and the scale matrix, Σ  for each of the 
three resolution cases.  We now present this development. 
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10.3 Change region at least as large as the multilook resolution cell 

A very good reference for the discussion in this section is given in [PREI06].  
Independently, but belatedly, very similar work was done in [BICK15], including very 
similar conclusions.  The work in [PREI06] is nicely done and is a recommended read by 
this author; however, for convenience we will follow [BICK15] in this section.    

For the case where the change region is as large as the multilook resolution cell, the 
Wishart distribution and the relation to the sample coherence was explained in 
[TOUZ96].  Therefore, it remains for us to use those results to develop the ROC 
curves.In this case, since the change regions cover the entire multilook estimation 
window we can think of the CCD as detection of a no coherence area against the 
background quiescent coherence.    For the ROC curves the probability of detection is the 
probability that the estimated coherence is less than a given threshold i.e.: 

 ( )ˆ 0,D th cP P Lµ λ µ= ≤ =  (14) 

where DP is the probability of detection, µ̂ is the estimated (sample) coherence, as stated 
above cµ is the population coherence (assumed to be zero in the change region),  and L  is 
the number of independent looks20.  The probability of a false-alarm is the probability 
that the estimated background coherence is less than this threshold, i.e.: 

 ( )ˆ ,FA th qP P Lµ λ µ= ≤  (15) 

where FAP is the probability of detection, as stated above qµ is the population coherence of 
the no-change quiescent region. 

From [TOUZ96], the probability density function of the coherence is in general: 

 

  ( ) ( ) ( ) ( )( ) ( )22 2 2 2
2 1ˆ ˆ ˆ ˆ, 2 1 1 1 , ;1;

L L
p L L F L Lµ µ µ µ µ µ µ

−
= − − −  (16) 

where µ̂ is the sample coherence, and µ is the generic population coherence.  One of the 
assumptions in the above equation is that the population coherence is stationary across 
the estimation multilook area. 

For the ROC curve calculations we need the cumulative distribution, which is given in 
[CART73] for integer L as:  

                                                 
20 Note that in the Wishart distribution, the number of degrees-of-freedom, ν , becomes the number of 
independent looks, L . 
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( ) ( )
2 22

2 2 2
2 12 2 2 2

0

1 1ˆ , ,1 ;1;
1 1

L kL

th th th
kth th

P L F k Lµ µµ λ µ λ µ λ
µ λ µ λ

−

=

   − −
< = − −   − −   

∑  (17) 

Plugging 0cµ =  into equation (17), the probability of detection can be shown to lead to a 
nice and simple result of: 

 ( ) 121 1
L

D thP λ
−

= − −  (18) 
 
The FAP is more complicated and follows: 

 ( ) ( ) ( )
2

2 2 2 2 2
2 1

0

1 1 1, ,1;
LL k

FA th th th
k

P F k Lλ µ λ λ µ
−

=

 = − − +  ∑  (19) 

As shown in Appendix C, the particular form we have chosen for equation (19) was 
modified from [CART73] for convenience because it can be shown to have a nice 
recursive form. 

If we are given a desired probability of detection, we can solve for the threshold using 
equation (18): 

 ( ) ( )1 11 1 L
th DPλ −= − −  (20) 

It is typically more desirable to set the threshold to yield a specific probability of 
false-alarm.  Unfortunately equation (19) is a transcendental equation that does not 
lend itself to simple inversion solution for the threshold.  We address this in the main 
text of this document. 

Given all of the above information, we now have the all the tools we need to perform the 
ROC curve plots for this case. 
 

10.4 Change region at less than the multilook resolution cell 

As discussed in the main body of this report, when the change region is contained within 
multilook resolution cell size and is smaller than the multilook resolution cell size, we 
mix two distributions with different statistics.  This violates the stationarity assumption 
used in the standard derivations of the sample coherence from [TOUZ96].  In general, 
this particular mixing of distributions is typically messy and may not be tractable 
[SHEP07].  There is a nice approximation that is used and that we will take advantage of 
in this document. The approximation was first proposed in [TAN83] but we follow the 
development in [GUPT00]. 
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The key to the approximation is the assumption that the linear combination of the central 
Wishart distributions can be approximated as a different central Wishart distribution.  
This approximation only covers central Wishart distributions.  At first blush, this does not 
help us because the Wishart distribution is for the sample covariance matrix and not the 
distribution for the sample coherence.  However, if one recognizes that the development 
of the sample coherence distribution [TOUZ96] starts with the central Wishart and in the 
end only requires the knowledge of parameters of the central Wishart distribution, the 
solution becomes simple21.  We just need to find the parameters of the central Wishart 
used to approximate the linear combination of the distributions.  Those parameters can be 
plugged into the distribution of the sample coherence. 

We now discuss the derivation of these parameters.  In some respects we are trying to 
“fit” the resulting linear combination of central Wishart distributions to a new central 
Wishart distribution.  As mentioned previously, the parameters required for the fitted 
central Wishart distribution are the degrees-of-freedom and the scale matrix.   

Tan, et al, proposed that an approximation developed originally for univariate random 
variables could be extended to the multivariate case [TAN83].  The univariate 
approximation technique is referred to as Satterthwaite’s approximation.  It establishes 
the necessary distribution parameters by setting the first two moments of the linearly 
combined distributions to the new approximating distributions moments.  The extension 
to the multivariate case is sometimes referred to at the multivariate Satterthwaite 
approximation. 

A difficulty that arises in the multivariate case is that the number of variables available 
for the fit can exceed the number necessary to define the approximating distribution.  
Tan, et al, resolve this by using the mean and Wilks’ generalized variance for the 
multivariate case in the place of the first two moments in the univariate case.  Setting the 
mean and generalized variance of the linear combination of the distribution components 
to those of the approximating central Wishart distribution allows us to solve for the 
degrees-of-freedom and the scale matrix of the approximating distribution. 

We now present the application of this approximation to our problem.  Detailed 
derivation of the estimation of the approximating distribution degrees-of-freedom and the 
scale matrix are presented in Appendix C.  Given these parameters, we show how it 
applies to our problem of coherence distribution with mixed coherence within the 
multiook resolution cell.   

In order to address the case of the change region size being less than the multilook 
resolution area, we must address a challenge of relaxing the assumption used in the 
previous section where the population coherence is stationary across the estimation 
multilook area.  In general in mathematics, this problem is known to be quite challenging, 
if not analyitically unrealizable.  However, we extend the use of the above approximation 
to the realm of SAR coherence.  This result represents a new contribution to the field.  

                                                 
21 We foreshadowed this in the discussion of the complex central Wishart distribution above. 
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We point out issues with the approximation in the main body of the report; however, we 
note that in general it does provide us with a framework for assessing resolution and 
CCD. 

For this appendix, we will assume that: 

2
1

1
1

q

q

µ
σ

µ
 

Σ =  
 

 (21) 

and 

2
2

1 0
0 1

σ  
Σ =  

 
 (22) 

where we assume 2σ  is the mean power in the clutter plus noise for all pixels (resolution 
cells). 

Using 1ν independent samples from a population with covariance matrix, 1Σ , to estimate 
a sample covariance matrix, 1S , leads to a central Wishart distribution ( )1 1 1,S W ν S .  
Likewise, the estimate of the sample covariance matrix of 2S using 2ν independent 
samples from a population with covariance matrix, 2Σ , has a central Wishart distribution 
of ( )2 2 2,S W ν S .  

Now assume that we are estimating the covariance matrix of S , where the estimate 
window (multilook resolution) contains samples 1 2sν ν ν= +  , of which 1ν are from the 
population 1Σ  and 2ν are from the population 2Σ .  The resulting estimate of the 
covariance matrix , S , is a mixture of the two populations, 1 2S S S+ .  From 
Appendix C, the distribution is approximately ( ),S W ν S  where: 
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 (41) 

and: 



 

 - 68 - 

1

2

1

1

1

q
ss

q
s

ν µ
νν s

νν µ
ν

 
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 Σ =
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 (36) 

One of the key contributions in this document is the recognition that based upon this 
approximation, we can use equation (16) from above as an estimate of the probability 
density function of the resulting sample coherence where we set L ν=  and 

( )1 s qµ ν ν µ=  .  Notice that one of the results of this approximation is that the population 
coherence within this mixed region is a simple linear weighting of the coherences 
contained within the estimation window. We restate this result in the following equation 
in order to be able to reference it later: 

1
c q

s

νµ µ
ν

=  (36) 

Using the above results, the resulting (approximate) probability density function is:  

  

( )( ) ( ) ( )( )2 222 2 2 21 1
1 2 12 2ˆ ˆ ˆ ˆ, 2 1 1 1 , ;1;s q q q

s s

p F
ν

νν νµ ν ν µ ν ν µ µ µ ν ν µ µ
ν ν

−   
= − − −   

   
 (23) 

for 3ν >  .  This equation works because it is known that non-integer values of are ν  
valid.  Unfortunately, the equation for the cumulative distribution of the sample 
coherence requires integer values of ν .  The estimate of the cumulative distribution in 
the non-integer case can be obtained either through numerical integration of equation (23) 
or by interpolation of equation (17) from nearby integer values.  In either case, it is 
important to note that for a given threshold the probability of false-alarm does not change 
in the model since we assume a large quiescent region; however, the probability of 
detection does change because we have diluted the change region. 
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11. Appendix B:  Another method of fitting 
In the previous appendix, we a developed a model based upon [TAN83] and showed how 
it could be used to generate an approximation to sample coherence when there is a 
mixture of two different population coherence statistics in the coherence estimation 
region.  The method presented above can crudely be thought of as “fitting” the mixed 
distribution to a central Wishart distribution.  This “fitting” has a solid mathematical 
heritage and basis from the Satterthwaite’s work with univariate random variables.  In 
this section, we present another fit that is more heuristic, and in a sense, brute force.   

Note that in the Satterthwaite multivariate approximation, we needed to boil the number 
of free variables down in the covariance matrix to a single variable to avoid an 
overdetermined “fit” to the complex Wishart distribution.  In the Satterthwaite 
approximation, the generalized variance is used.  As will now be discussed, in this 
appendix we will propose the estimated coherence as that variable. 

As with the preceding model, the basis for the model in this section is the assumption that 
the covariance of the mixed distribution is approximated by a complex central Wishart 
distribution.  The resulting coherence probability distribution under this condition is 
known and given in equation (16).  The heuristic model used here maintains the assumed 
population coherence (i.e., the scale matrix) from Tan’s method given in equation (36).  
The difference is that we estimate the degrees-of-freedom by matching the variances22 of 
simulated data to the probability density function given in equation (16). 

In Tan’s method, the covariance means and the generalized variance are matched to the 
approximating distribution.  The matching of the means led essentially to the weighted 
population coherence, which we will maintain in this method.  The generalized variance 
led to the number of degrees-of-freedom.  We will expound briefly on the meaning of the 
generalized variance in this section.  Although this discussion can be shown in a general 
case, we only need concern ourselves with the bivariate case.   

It is well known that contours of constant probability for a bivariate Gaussian distribution 
are an ellipse.  What is less well known is that the generalized variance is a measure of 
the square of the area (volume, in general) of the ellipse (ellipsoid, in general).  
Therefore, the generalized variance is a metric for the spread of the distribution.  Tan’s 
method chooses the degrees of freedom to match the spread of the linearly combined 
distributions with that of the spread of the approximating distribution. 

In the bivariate case, there is a relationship between the population coherence and the 
population generalized variance.  Therefore, this proposed heuristic method is a different 
way to fit to the spread of the distribution, which is assumed to be a complex central 
Wishart. 

                                                 
22 Note that the standard distribution for estimated coherence there is a correspondence between the 
variance and the mean, so theoretically either could be chosen if the central Wishart distribution 
approximation holds.  
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12. Appendix C:  Collection of supporting 
analysis 

This appendix provides the math for supporting discussion in this document. 

11.1 Recursive calculation of cumulative coherence distribution 

The cumulative distribution for the coherence was presented in equation (17) and is 
repeated here from [CART73]:  

 

( ) ( )
2 22

2 2 2
2 12 2 2 2

0

1 1ˆ , ,1 ;1;
1 1

L kL

th th th
kth th

P L F k Lµ µµ λ µ λ µ λ
µ λ µ λ

−

=

   − −
< = − −   − −   

∑
 (17) 

We use various equations from [ABRA72] to rewrite the above equation in a recursive 
form. 

First, using [ABRA72] the hypergeometric term in the equation above can be written as; 

 ( ) ( ) ( )2 2 2 2 2 2
2 1 2 1,1 ;1; 1 1, ,1;

L k

th th thF k L F k Lλ µ λ µ λ µ
+

− − = − +  (24) 

resulting in: 

( ) ( ) ( ) ( )
2

2 2 2 2 2
2 1

0

ˆ , 1 1 1, ,1;
LL k

th th th th
k

P L F k Lµ λ µ λ µ λ λ µ
−

=

 < = − − +  ∑  (25) 

The following recursive relationship can be used to advantage: 

 
( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 2 2 2 2
2 1 2 1

2 2
2 1

1 1, ;1; 2 1 , ,1;

1 1, ;1;

th th th th

th

k F k L k k L F k L

k F k L

λ µ λ µ λ µ λ µ

λ µ

 − + = − − + 

+ − −
 (26) 

recalling that: 

( )2 2
2 1 0, ;1; 1thF L λ µ =  (27) 

Therefore, each kth term within the brackets of the sum in equation (25), starting with 
0k = , incrementally can be generated in a simple recursive manner making for an 

elegant calculation of the cumulative distribution for coherence. 
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11.2 Application of the Satterthwaite approximation 

In this section we present the form of the Satterthwaite approximation that we use in this 
document.  As mentioned above the discussion of the approximation initially was 
proposed by [TAN83] but we will follow the development in [GUPT00]. 

Given a random variable, iS , with central Wishart probability distribution designated as 
( ),i i iS W ν S where iν  is the degrees-of-freedom and iΣ  is the scale matrix, the mean is 

known to be: 

( )i i iE S ν= S  (28) 

Given a mixture of two independent central Wishart distributed random variables, 1S and

2S , if 1 2Σ = Σ = Σ , then the mean of the sum of the two random variables is: 

( ) ( ) ( ) ( )1 2 1 2 1 2E S E S S ν ν ν ν ν ν= + = S = + S⇒ = +  (29) 

which is a fundamental property of the Wishart distribution. 

The Satterthwaite approximation [TAN83] approximates the linear combination of 
central Wishart distributions as a central Wishart distribution.  To establish the 
approximating distribution, we need to find the appropriate values of the degrees-of-
freedom and the scale matrix .  This involves two parts.  The first part of the 
approximation is to set the mean of the linear combination of the random variables to the 
mean of the approximating distribution.  In our case of interest we are considering the 
linear combination of two central Wishart distributions that we designate as 

( )1 1 1,S W ν S and ( )2 2 2,S W ν S .  The linear combination that we are concerned with is: 

1 2S S S+  (30) 

In the approximation case we assume that even if 1 2Σ ≠ Σ  we can approximate the mean 
of the random variable in equation (30) as: 

1 1 2 2ν ν νΣ ≈ Σ + Σ  (31) 

The scale matrix for the approximating central Wishart distribution is one of the two 
parameters that we need23.  Using equation (31), we have that the scale matrix of the 
approximating distribution is: 

1 1 2 2ν ν
ν

Σ + Σ
Σ ≈  (32) 

                                                 
23 We note that equation (34) contains the other parameter we need, ν , therefore we do not really have 
the scale matrix even yet. 
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For this appendix, we will assume that: 
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and 
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In the preceding appendix, we discuss the above choice of these individual scale 
matrices. 

To simplify, let: 

( )1 2sν ν ν= +  (35) 

then equation (32) becomes: 
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 (36) 

Next we need to solve for the degrees-of-freedom, ν .  This is done by equating the 
generalized variance of the approximating distribution to that of the linear combination of 
the random variables, vσ .  The work in [TAN83] and [GUPT00] is a bit involved, so we 
will just hit the highlights. 

Equating the generalized variances for our case yields: 

( ) ( )
2

1
i r i i r r r

i
K K K Kν ν− −

=

Σ ⊗Σ = Σ⊗Σ∑  (37) 

where rK is an elimination matrix, and ⊗means take the Kronecker product. 

After a healthy dose of algebra and matrix theorems, for our bivariate case the solution 
for the degrees-of-freedom becomes: 

1 3vσ

ν
ν

Σ
≈  (38) 

where: 
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and where the following can be shown: 

( ) ( )
2 3

12 3 2 2 2 4 21 1 1
1 1 1 1 1v 1 4 4s
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ν ν νs ν µ µ µ µ µ
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 (40) 

The result is that: 
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 (41) 

As a quick check of equation (41), if 1 0µ = , we arrive at sν ν≈ , which is what we would 
expect from the Wishart property that we discussed above.  

So finally, the approximating distribution for S  in equation (30) is: 

( ),S W ν S  (42) 

where ν is in equation (41) and Σ is in equation (36). 

q.e.d. 

12.3 Application of the Satterthwaite approximation with correlation in 2Σ    

In the previous derivation we assumed that the second Wishart distribution had a scale 
matrix of the form in equation (34).  What if it were of the following form: 

22
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1
1
µ

σ
µ
 

Σ =  
 

 (43) 

where 2 0µ ≠ ?  In this case, the approximation scale matrix becomes: 
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which reduces to equation (36) in the previous subsection when 2 0µ = . 

The degrees-of-freedom parameter is more complicated in this case but can be derived 
following the same procedure as above.  We will not present the full equation here to 
save space, although we briefly show a step towards the solution of equation (38) for this 
case.  We can readily find that: 
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13. Appendix D:  Symbols and terminology 
Variable definitions 
 

W - is complex Wishart distribution  
rK - is elimination matrix 

k  - is the integer number of radar resolutions cells within mlρ where no-
change is mixed in with change  where k L= −  .  (Also, k  is 
sometimes arbitrary parameter used in various summations) 

  - is the integer number of radar resolutions cells within mlρ where change 
occurs when we make this assumption, i.e., to simplify analysis we may 
assume that Γ =   is an integer, and 1 L≤ <  

L  - independent looks averaged to estimate the coherence and sets the 
probability density function (related to ν  ) 

DP  - probability of detection 

FAP  - probability of false-alarm 
S  - is a random variable from a sample covariance matrix pulled from a(n 

approximating) complex central Wishart random variable 
iS  - is a random variable from the ith sample covariance matrix pulled from a 

(true) complex central Wishart random variable 
snr  - signal-to-noise ratio, assumed equal between images (unitless) 
W - is Wishart distribution  

cΓ  -, is the area where change occurs 

c RρΓ = Γ  -is the area where change occurs normalized by (i.e., relative to) 
the radar resolution  

thλ  - Neyman-Pearson threshold 
µ  - the value of the population coherence  
µ̂  - the estimate of the coherence (often used to mean the magnitude of this 

quantity) ( ),W ν Σ - complex central Wishart distribution with 
degrees-of-freedom, ν  , and scale matrix, Σ   

cµ - population coherence of the change region  

qµ - population coherence of the quiescent (no-change) region  
ν  - is the degrees-of-freedom for Wishart/coherence probability  

iν  - is the degrees-of-freedom for Wishart/coherence probability for the ith 
region 
1 2sν ν ν= +  - is the sum of the degrees-of-freedom for two regions (1 and 2) 

Rρ  - “resolution” of the radar, i.e., the Rayleigh resolution (an area in this 
document) 

mlρ  - “multilook resolution” of the radar, i.e., the contiguous area used in a 
single estimate of a coherence (in this document ml RLρ ρ= ) 
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Σ  -is the scale, or diffusion, matrix for Wishart distribution 
iΣ  -is the scale, or diffusion, matrix for the ith Wishart distribution 

( )2 1 , ; ;F a b c d - the Gauss hypergeometric function  

X  - determinant of matrix X   
⊗  - is the Kronecker product 
 

Terminology 

Since the terminology is somewhat unique in this report, and is important to be clear we 
repeat some of this terminology here. 

“change region” – is the region which contains change.  The population coherence in this 
region is designated as cµ  

“multilook resolution” – the size of the area used to estimate the coherence, mlρ , in this 
report this ml RLρ ρ=  

 “number of looks” – number of independent samples used to estimate the coherence, L   

“population coherence” – true (mean) coherence of the region of interest, i.e., the mean 
coherence we would observe with infinite number of looks, µ  

 “quiescent region” – is the region which has no change.  The population coherence in 
this region is designated as qµ   

 “radar (or Rayleigh) resolution” – the size of the raw resolution cell size for the radar, 
Rρ  , (note this is really an area in this report).  This is set by radar bandwidths in slow 

and fast-time 

 “sample coherence” – estimated coherence, µ̂  , using L  looks 
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